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Abstract

Ferroelectric materials, such as PZT, PLZT, PMN and BaTiO3, provide unique actuator and
sensor capabilities for applications including nanopositioning, high speed valves and fuel injectors,
camera focusing and shutter mechanisms, ultrasonic devices for biomedical imaging and treatment,
and energy harvesting devices. However, to achieve the full potential of the materials, it is necessary
to develop and employ models that quantify the creep, rate-dependent hysteresis, and constitutive
nonlinearities that are intrinsic to the materials due to their domain structure. The success of mod-
els requires that they be highly efficient to implement since real-time applications can require kHz
to MHz rates. The calibration of models for specific materials, devices, and applications, requires
efficient and robust parameter estimation algorithms. Finally, control designs can be facilitated
by models that admit efficient and robust approximate inversion. The homogenized energy model
(HEM) is a multiscale, micromechanical framework that quantifies a range of hysteretic phenomena
intrinsic to ferroelectric, ferromagnetic and ferroelastic materials. In this paper, we present highly
efficient implementation and parameter estimation algorithms for the ferroelectric model. This in-
cludes techniques to construct analytic Jacobians and data-driven algorithms to determine initial
parameter estimates to facilitate subsequent optimization. The efficiency of these algorithms fa-
cilitates material and device characterization and provides the basis for constructing efficient and
robust inverse algorithms for model-based control design. The model implementation, calibration,
and validation are illustrated using rate-dependent PZT data and single crystal BaTiO3 data.
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Nomenclature

d Piezoelectric constant (m/V = C/N)
h Piezoelectric constant (V/m = N/C)
E Electric field (V/m)
g Gibbs energy for dipoles (CV)
Gα Gibbs energy density of α-variant (CV/m3)
Ge

α Electric Gibbs energy density of α-variant (CV/m3)
P Polarization (C/m2)
P Polarization kernel (C/m2)
Pα Polarization of α-variant (C/m2)
Pα

R Remanent polarization of α-variant (C/m2)
Pα

m Minimum polarization of α-variant (C/m2)
sE
α Elastic compliance of α-variant at constant field (m2/N)
T Temperature (K)
x+, x−, x90 Fraction of positively, negatively and 90o oriented dipoles (Unitless)
Y P

α Elastic stiffness of α-variant at constant polarization (N/m2)
ε Permittivity (F/m = C/Vm)
ε Strain (Unitless)
ε Strain kernel
εα Strain of α-variant
εαR Remanence strain of α-variant
εαm Minimum strain of α-variant
ηε Inverse susceptibility at constant strain (m/F = Vm/C)
σ Stress (N/m2)
τ90 Relaxation time for 90o switching (s)
τ180 Relaxation time for 180o switching (s)
χe Electric susceptibility (Unitless)
χσ

α Ferroelectric susceptibility of α-variant at constant stress (F/m = C/Vm)
ψα Helmholtz energy density of α-variant (CV/m3)

1 Introduction

Ferroelectric materials, such as lead zirconate titanate (PZT), lanthanum-doped lead zirconate ti-
tanate (PLZT), lead manganese niobate (PMN), polyvinylidene flouride (PVDF), and barium ti-
tanate (BaTiO3), are being widely considered as actuators, sensors, and structural units for a range
of aerospace, aeronautic, automotive, industrial and biomedical applications. Their advantages derive
from the intrinsic properties of the materials. The complementary direct and converse piezoelectric
effects imbue the materials with multiple design properties including sensor, actuator, self-monitoring
and nondestructive evaluation, and energy harvesting capabilities. Their functionality is augmented
by their solid state nature which promotes miniaturization and simplified design and reduces power
requirements and heat generated by the units. Furthermore, ferroelectric actuators can provide
nanometer positioning resolution and can operate at frequencies ranging from DC to MHz. As de-
tailed in the companion paper [19], ferroelectric transducers are being considered, or are already
being employed, for a large number of applications including high speed valves for fuel injectors, fer-
roelectric memory technologies (e.g., FeRAM), nanopositioning units (e.g., AFM and STM stages),
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high speed camera shutters and autofocusing units, ultrasonic transducers for biomedical imaging
and treatment, micro and pico air vehicle design, and energy harvesting devices.

However, the ferroelectric properties that imbue the materials with unique transducer capabil-
ities also produce rate-dependent hysteresis, creep, and constitutive nonlinearities as illustrated in
Figure 1. The field-polarization and field-strain data from [26] illustrates that rate-dependent effects
are significant at frequencies as low as 1 Hz. PZT data from [24] illustrates that for fixed field inputs,
both the strain and polarization exhibit significant creep on timescales of 1 to 20 seconds. Finally,
the MFC data from [8] illustrates nested minor loop behavior typical of moderate drive regimes.
Whereas the full switching behavior shown in Figure 1(a)-(e) will typically not be encountered in
applications, general models must account for the full range of rate-dependent and creep behavior
to provide comprehensive device characterization.

To be optimally utilized in applications, constitutive models must satisfy the following criteria:
(i) they must adequately quantify the range of rate-dependent behavior exhibited by the materials,
(ii) they must be in a form that can be readily extended to provided distributed models, for complex
structures and devices, that are amenable to finite element implementation, (iii) they must be efficient
to implement, (iv) they must be readily calibrated for a specific material or device, and (v) models
employed in control designs can prove advantageous if they admit the construction of approximate
inverse relations.

It is shown in [18–21] that the homogenized energy model (HEM) satisfies (i) and (ii). Fur-
thermore, the construction of approximate inverses for previous formulations of the framework are
reported in [4,18] and inversion techniques for the present formulation [19] are addressed in [15]. In
this paper, we address (iii) and (iv) by presenting highly efficient implementation techniques and
data-driven parameter estimation algorithms for the homogenized energy model. In combination, this
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Figure 1: (a) Field-polarization, (b) field-strain and (c) time-strain PZT data from [24]. Rate-
dependent (d) polarization and (e) strain PZT data from [26]. (f) Field-strain MFC data from [8].
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provides the framework with significant flexibility for use in simulation packages, design algorithms,
and control designs for systems utilizing ferroelectric transducers.

To provide context for the framework, we first summarize the mechanisms that produce the hys-
teretic behavior shown in Figure 1. The creep and rate-dependencies are due to the fact that kinetics
associated with dipole switching typically differ from mechanical or electrical loading rates. Further-
more, it is discussed in [19] that the 180o switching associated with large polarization changes often
occurs at a different rate than 90o switching associated with large strain changes. In combination,
this establishes that multiple time scales must be incorporated in dynamic models.

As illustrated for a PZT-based macro-fiber composite (MFC) in Figure 2, hysteresis also involves
multiple spatial scales. Within a domain, strains or changes in polarization are due to stress-induced
material deformations or field-induced ion movement and the behavior is often reversible and linear.
Field or stress-induced dipole switching at the grain level produces irreversible hysteresis in both the
field-polarization and field-strain relations. For single crystal materials comprised of a single grain,
the switching is typically rapid thus producing sharp hysteresis and butterfly loops in quasistatic
operating regimes. For polycrystalline materials with distributed interaction and coercive fields,
hysteresis and butterfly loops are smoothed due to nonuniform grain contributions. The behavior
of hysteresis loops is further modified when hysteretic actuator or sensor materials are employed on
distributed structures.

Figure 2: Multiscale behavior of a PZT-based MFC transducer at the application, device, material
and unit cell levels.
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As noted in Figure 2, material-level constitutive relations for the polarization P and strain ε can
generically be expressed as

P (E, σ) = d(E, σ)σ + χσE + Pirr(E, σ)

ε(E, σ) = sEσ + d(E, σ)E + εirr(E, σ)

where E, σ are input fields and stresses, χσ is the ferroelectric susceptibility at constant stress, sE

is the elastic compliance at constant field, and d is a piezoelectric coupling coefficient. We note that
d(E, σ), Pirr(E, σ) and εirr(E, σ) incorporate the nonlinear and irreversible history-dependence due
to dipole switching.

Various modeling hierarchies can be defined by the manner in which d, Pirr and εirr are con-
structed. Micromechanical, or microscopically-motivated models are based on an energy description
of the material at the domain or grain level in combination with various homogenization techniques to
provide expressions for the nonlinear, effective components d, Pirr and εirr. Phenomenological mod-
els circumvent the difficulties associated with quantifying complex, or poorly understood, micro-scale
physics by constructing relations for d, Pirr and εirr based on macroscale observations or experimen-
tal measurements, often guided by thermodynamic constraints. Details regarding various models for
ferroelectric materials can be found in [2, 9, 13,16,18,19].

The homogenized energy model is a multiscale, micromechanical approach that begins with energy
analysis at the domain level to construct the linear relations shown in Figure 2 for Pα and εα where
α designates the dipole variant; e.g., α = ±180, 90 for tetragonal materials. Switching processes
due to domain wall nucleation and movement are incorporated by tracking the evolution of dipole
fractions xα which serve as internal variables. Differential equations quantifying the dynamics of xα

are driven by likelihood rates constructed using Boltzmann theory to quantify the scaled probability
of transitioning between stable equilibria associated with dipole variants. This incorporates the
rate-dependence and multiple-time scales exhibited by the data in Figure 1 and yields grain-level or
single crystal kernels P and ε. For polycrystalline materials, material-level models are constructed
by assuming that properties such as coercive fields, critical driving forces, and interaction fields are
manifestations of underlying densities rather than constants.

The three primary issues that must be addressed to construct implementation algorithms are: (i)
efficient approximation of the integrals, posed on infinite and semi-infinite domains, arising in the
homogenization step used to construct the irreversible components d(E, σ), Pirr(E, σ) and εirr(E, σ),
(ii) efficient approximation of the evolution equations for xα, and (iii) efficient evaluation of the like-
lihoods which incorporate rate-dependent effects and drive the evolution equations. The first issue
is addressed by employing density representations that admit efficient numerical approximation on
finite domains whereas implicit Euler discretizations readily address the second issue. The repeated
evaluation of likelihoods is avoided by constructing arrays that permit high-speed access during model
implementation. In combination, the evaluation of d(E, σ), Pirr(E, σ) and εirr(E, σ) are reduced to
operations solely involving componentwise matrix multiplication and summation. Hence the oper-
ations are highly efficient and inherently parallelizable which facilitates subsequent implementation
using devices such as field programmable gate arrays (FPGA) [3].

We note that approximate model inversion techniques rely on forward solutions of the model.
Hence the efficiency of forward algorithms also directly contributes to the speed of inverse algorithms.

There are two primary issues that must be addressed when employing gradient-based optimization
algorithms for the parameter estimation required for model calibration: (i) determination of accurate
initial parameter estimates and (ii) efficient and accurate construction of gradients or Jacobians. Due
to its physical nature, parameters in the homogenized energy model can be directly correlated with
properties of measured data. We utilize that here to construct data-driven algorithms to determine
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initial parameter estimates. Secondly, we construct analytic Jacobian relations which significantly
improves both the speed and accuracy of optimization routines. In combination, this helps mitigate
some of the difficulties associated with the shallow slopes and nonconvexity (multiple local minima)
inherent to functionals employed in parameter estimation problems of this type.

We note that various aspects of the implementation and data-driven parameter estimation algo-
rithms can be optimized to provide improved performance for specific data sets. Instead, our goal
was to provide algorithms that balance simplicity, robustness, accuracy, and optimality for a wide
range of materials, applications and operating regimes. Points were algorithms can be modified or
optimized are noted in the discussion.

Following a brief summary of the model in Section 2, highly efficient implementation algorithms
are presented in Section 3. The parameter estimation problem is discussed in Section 4 where we
provide algorithms to construct analytic Jacobians and data-driven techniques to determine initial
parameter estimates. Model calibration and validation are illustrated in Section 5 using PZT data
from [24] and single crystal BaTiO3 data from [5]. Additional examples illustrating the capability of
the model to characterize creep and rate-dependent data, such as the shown in Figure 1, are provided
in the companion paper [19] which details the model development.

2 Polarization and Strain Models

As detailed in [19], consideration of 180o dipole switching yields a macroscopic model quantifying
the nonlinear and hysteretic field-polarization map for ferroelectric materials whereas the additional
incorporation of 90o switching yields a homogenized model quantifying both the polarization and
strains due to input fields and stresses. We summarize the latter model and indicate simplifications
that occur if considering only the polarization in the absence of applied stresses.

Polarization and Strain Model

At the lattice level, we consider the Helmholtz and Gibbs energy densities

ψα(P, ε) =
1
2
ηε

α(P − Pα
R)2 +

1
2
Y P

α (ε− εαR)2 + hα(P − Pα
R)(ε− εαR)

and
Gα(E, σ;P, ε) = ψα(P, ε)− EP − σε

where we indicate ±180o and 90o orientations by α = ±, 90. As summarized in the nomenclature
table at the beginning of the paper, Pα

R , ε
α
R, η

ε
α, Y

P
α and hα denote the remanence polarization, rema-

nence strain, inverse susceptibility at constant strain, elastic stiffness at constant polarization, and
piezoelectric constant.

For a fixed applied field and stress, the conditions ∂G
∂P = 0 and ∂G

∂ε = 0 yield the relations

Pα
m = Pα

R + χσ
αE + dασ

εαm = εαR + dαE + sE
ασ

(1)

where

χσ
α =

Y P
α

Y P
α η

ε
α − h2

α

, dα =
hα

h2
α − Y P

α η
ε
α

, sE
α =

ηε
α

Y P
α η

ε
α − h2

α

are the ferroelectric susceptibility at constant stress, the piezoelectric constant, and elastic compliance
at constant field. The minimum of the Gibbs energy in each α-well can then be expressed as

Gαm(E, σ) = −1
2
χσ

αE
2 − 1

2
sE
ασ

2 − dαEσ − EPα
R − σεαR.
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The dipole fractions x+, x− and x90 associated with positively, negatively, and 90o degree dipoles
evolve according to the differential equations

ẋ− = −(p−90 + p−+)x− + p90−x90 + p+−x+

ẋ90 = p−90x− − (p90− + p90+)x90 + p+90x+

ẋ+ = p−+x− + p90+x90 − (p+90 + p+−)x+

(2)

where
pαβ(E, σ) =

1
ταβ

e−∆Ga
αβ(E,σ)V/kT (3)

quantifies the likelihood of transitioning from an α-well to a β-well. As noted in Table 1, (2) can be
simplified using the relation x+ + x− + x90 = 1. The activation energy is specified by the relation

∆Ga
αβ(E, σ;Fc) =

{
∆G0(1− Fαβ(E, σ)/Fc)2 , Fαβ(E, σ) ≤ Fc

0 , Fαβ(E, σ) > Fc.

Here Fαβ(E, σ) = Gαm(E, σ)−Gβm(E, σ) is the thermodynamic driving force. The specific form of
Fαβ , based on the physical assumption that

χσ
+ = χσ

− = χσ
90 = χσ

sE
+ = sE

− = sE
90 = sE

P 90
R = 0, P+

R = −P−R , ε
+
R = ε−R

d90 = 0, d− = −d+

τ90− = τ−90 = τ90+ = τ+90 = τ90 , τ+− = τ−+ = τ180,

(4)

is given in Table 1. Note that

∆G0 =

{
1
4Fc , 180o Switching
1
16Fc , 90o Switching

is the energy barrier at zero driving force.
The polarization and strain kernels are given by

P =
∑

α=±,90

xαP
α
m , ε =

∑
α=±,90

xαε
α
m.

Based on (1) and (4), these relations can be expressed as

P (E, σ) = d̄(E, σ)σ + χσE + P irr(E, σ)

ε(E, σ) = sEσ + d̄(E, σ)E + εirr(E, σ)

where
d̄(E, σ) =

∑
α=±,90

dαxα(E, σ)

P irr(E, σ) =
∑

α=±,90

Pα
Rxα(E, σ)

εirr(E, σ) =
∑

α=±,90

εαRxα(E, σ).
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In the final step in the development of [19], macroscopic models

P (E(t), σ(t);x0
+) =

∫ ∞

0

∫ ∞

−∞
P (E(t) + EI , σ(t);Fc)νI(EI)νc(Fc)dEIdFc

ε(E(t), σ(t);x0
+) =

∫ ∞

0

∫ ∞

−∞
ε(E(t) + EI , σ(t);Fc)νI(EI)νc(Fc)dEIdFc

are constructed by considering interaction fields EI and thermodynamic driving forces Fc to be
manifestations of underlying densities νI and νc. The final models can thus be expressed as

P (E, σ) = d(E, σ)σ + χσE + Pirr(E, σ)

ε(E, σ) = sEσ + d(E, σ)E + εirr(E, σ)

where
d(E, σ) =

∫ ∞

0

∫ ∞

−∞
d̄(Ee;Fc)νI(EI)νc(Fc)dEIdFc

Pirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
P irr(Ee;Fc)νI(EI)νc(Fc)dEIdFc

εirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
εirr(Ee;Fc)νI(EI)νc(Fc)dEIdFc.

Here Ee(t) = E(t) + EI is the effective field.
Details regarding various choices for the densities are provided in [19]. For the implementation

and parameter estimation algorithms detailed in this paper, we employ the representations

νc(Fc) =
1∑
` α`

Kα∑
k=kα

αkφk(Fc) , φk(Fc) =
1

σk
cFc

√
2π
e−[ln(Fc)−ln(F̄c)]2/2(σk

c )2 , σk
c = 2kσc

νI(EI) =
1∑
` β`

Kβ∑
k=kβ

βkϕk(EI) , ϕk(EI) = 1
σk

I

√
2π
e−E2

I /2(σk
I )2 , σk

I = 2kσI

(5)

where the preceding sums ensure integration to unity. During model calibration, the parameters
{αk, βk} are determined through a least squares fit to the data.

The complete polarization and strain model is summarized in Table 1.

Parameters for the Polarization-Strain Model

To construct the density basis functions ϕk(EI) and φk(Fc), it is necessary to determine values
for the driving force mean µc = ln(F̄c) and variance σ2

c as well as the interaction field variance σ2
I .

We denote this set of parameters by
p̄ = [µc, σ

2
c , σ

2
I ]. (6)

We provide an algorithm in Section 4.2 to estimate values for these parameters based on measured
attributes of E-P data. We note that these parameters are not updated or optimized through a least
squares fit to data.

Based on the assumption (4), the remaining parameters are denoted by

p = [P+
R , ε

+
R, ε

90
R , χ

σ, d+, s
E , γ, τ90, τ180, αk, βk]. (7)

This comprises the set that is optimized during model calibration.
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Homogenized Energy Model:

P (E, σ) = d(E, σ)σ + χσE + Pirr(E, σ)

ε(E, σ) = sEσ + d(E, σ)E + εirr(E, σ)
(8)

where
d(E, σ) =

∫ ∞

0

∫ ∞

−∞
d̄(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc

Pirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
P̄irr(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc

εirr(E, σ) =
∫ ∞

0

∫ ∞

−∞
ε̄irr(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc

(9)

Kernels:
d̄(E, σ;Fc) =

∑
α=±,90

dαxα(E;Fc)

P̄irr(E, σ;Fc) =
∑

α=±,90

Pα
Rxα(E;Fc)

ε̄irr(E, σ;Fc) =
∑

α=±,90

εαRxα(E;Fc)

(10)

Evolution Equations: (t;E, σ, Fc)

ẋ− = −(p−90 + p−+ + p90−)x− + (p+− − p90−)x+ + p90−

ẋ+ = (p−+ − p90+)x− − (p+90 + p+− + p90+)x+ + p90+

x90 = 1− x+ − x−

(11)

Likelihoods: α, β = ±90

pαβ(E, σ;Fc) =
1
ταβ

e−γ∆Ga
αβ(E,σ;Fc) , γ = V/kT (12)

Activation Energy: α, β = ±90

∆Ga
αβ(E, σ;Fc) =

{
∆G0(1− Fαβ(E, σ)/Fc)2 , Fαβ(E, σ) ≤ Fc

0 , Fαβ(E, σ) > Fc

F90+(E, σ) = d+Eσ + P+
RE − (ε90R − ε+R)σ , F+90 = −F90+

F90−(E, σ) = −d+Eσ − P+
RE − (ε90R − ε+R)σ , F−90 = −F90−

F+−(E, σ) = −2d+Eσ − 2EP+
R , F−+ = −F+−

(13)

Densities:

νc(Fc) =
1∑
` α`

Kα∑
k=kα

αkφk(Fc) , φk(Fc) =
1

σk
cFc

√
2π
e−[ln(Fc)−ln(F̄c)]2/2(σk

c )2

νI(EI) =
1∑
` β`

Kβ∑
k=kβ

βkϕk(EI) , ϕk(EI) =
1

σk
I

√
2π
e−E2

I /2(σk
I )2

(14)

Table 1: Components of the polarization and strain model based on 90o dipole switching.
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Polarization Model

If solely quantifying the polarization in the absence of applied stresses, one can consider energy
landscapes and dipole fractions associated only with positively and negatively oriented dipoles which
we designate by α = ±. It is shown in [19] that a complete characterization of the Helmholtz and
Gibbs energy densities yields likelihoods p−+ and p+− formulated in terms of complementary error
functions whereas formulation in terms of the activation energy yields likelihood relations analogous
to (3). We focus on this latter case and note that analogous implementation and parameter estimation
algorithms can be constructed for the error function formulation.

The polarization model based on 180o dipole switching is summarized in Table 2.

Polarization Model Parameters

In this case, we employ a coercive field density νc(Ec) having the same form as the driving force
density νc(Fc). Hence it is again necessary to prescribe data-driven algorithms to determine values
of the coefficients p̄ in (6). The parameters to be estimated through a least squares fit to data are

p = [η, PR, γ, τ, αk, βk]. (15)

We discuss associated optimization algorithms in Section 4 and data-driven techniques to obtain
initial parameter estimates in Section 4.2.

3 Implementation Algorithms

To facilitate implementation of the models summarized in Tables 1 and 2, or their inverses, three
issues must be addressed: (i) approximation of the infinite-domain integrals in a manner that retains
its accuracy for the basis expansions (5), (ii) evaluations of the likelihoods pαβ in an efficient manner,
and (iii) efficient solution of the differential equations (11) and (19).

3.1 Quadrature Techniques

To implement the model, the integrals defining the terms d, Pirr and εirr in (9) and (17) must be
approximated in a manner that is both efficient and accurate. We first note that by employing the
relations (10), these terms can be expressed as

d(E, σ) =
∑

α=±,90

dα

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc

Pirr(E, σ) =
∑

α=±,90

Pα
R

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc

εirr(E, σ) =
∑

α=±,90

εαR

∫ ∞

0

∫ ∞

−∞
xα(Ee;Fc)νI(EI)νc(Fc)dEIdFc.

Secondly, it is noted in [19] that the densities satisfy exponential decay constraints. Hence approxi-
mation algorithms can be defined on finite domains rather than necessitating quadrature techniques
for infinite and semi-infinite domains. We illustrate here a trapezoidal formula and refer the reader
to [18] for details regarding composite Gaussian quadrature techniques. We note that truncation
of the domains and use of composite techniques is more efficient to implement than Gauss-Hermite
and Gauss-Laguerre algorithms, that are designed specifically for infinite and semi-infinite intervals,

9



Homogenized Energy Model:

P (E) =
E

η
+ Pirr (16)

where
Pirr(E) =

∫ ∞

0

∫ ∞

−∞
P̄irr(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc (17)

Kernel:
P̄irr(E;Fc) =

∑
α=±90

Pα
Rxα(E;Fc) = −PR + 2PRx+ (18)

Evolution Equations: (t, E;Fc)

ẋ+ = −(p−+ + p+−)x+ + p−+

x− = 1− x+

(19)

Likelihoods (Choice 1): α, β = ±

pαβ(E;Fc) =
1
τ
e−γ∆Ga

αβ(E;Fc) , γ = V/kT (20)

Activation Energy: α, β = ±90, Fc = 2EcPR,∆G0 = Fc
4

∆Ga
αβ(E;Fc) =

{
∆G0(1− Fαβ(E)/Fc)2 , Fαβ(E) ≤ Fc

0 , Fαβ(E) > Fc

F−+(E) = 2EPR , F+− = −F−+

(21)

Likelihoods (Choice 2):

p+−(E;Ec) =
γ1

erfcx[γ2(−E − Ec)]
, p−+(E;Ec) =

γ1

erfcx[γ2(E − Ec)]
(22)

where

γ1 =
1
τ

√
2V η
πkT

, γ2 =

√
V

2kTη

Densities:

νc(Fc) =
1∑
` α`

Kα∑
k=kα

αkφk(Fc) , φk(Fc) =
1

σk
cFc

√
2π
e−[ln(Fc)−ln(F̄c)]2/2(σk

c )2

νI(EI) =
1∑
` β`

Kβ∑
k=kβ

βkϕk(EI) , ϕk(EI) =
1

σk
I

√
2π
e−E2

I /2(σk
I )2

(23)

Table 2: Components of the polarization model based on 180o dipole switching and the physical
assumptions (4) with PR ≡ P+

R and τ ≡ τ180.
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because they allow accurate evaluation of the density expansions (5) and construction of lookup
tables to improve algorithm efficiency as detailed in Section 3.2.

If we let Fci , EIj and vi, wj respectively denote the quadrature points and weights, we obtain the
approximate relations∫ ∞

0

∫ ∞

−∞
xα(E + EI ;Fc)νI(EI)νc(Fc)dEIdFc ≈

Ni∑
i=1

Nj∑
j=1

xα(E + EIj ;Fci)νI(EIj )νc(Fcj )viwj . (24)

For the validation results reported in Section 5, sufficient accuracy was achieved using a trapezoid
rule with Ni = Nj = 41.

3.2 Determination of Phase Fractions and Likelihoods

From (24), it is observed that evaluation of the model requires the solution of Ni × Nj differential
equations for each phase fraction xα which in turn requires Ni×Nj evaluations of the likelihoods pαβ .
Due to its relative simplicity, we first illustrate a highly efficient implementation algorithm for the
180o polarization model. In Section 3.2.2, an analogous, but slightly more complicated, algorithm is
developed for the 90o polarization-strain model.

3.2.1 Polarization Model

To approximate the solution of (19), it is shown in [4] that for sufficiently small stepsizes ∆t, an
implicit Euler discretization yields the stable difference relation

xk+1
+ = ck+1

1 xk
+ + ck+1

2

where tk = k∆t, Ek
e = Ee(tk) = E(tk) + EI , x

k
+ = x+(tk; ekE , Fc) and

ck+1
1 =

1
1 + ∆t[p−+(Ek+1

e ;Fc) + p+−(Ek+1
e ;Fc)]

ck+1
2 =

p−+(Ek+1
e ;Fc)∆t

1 + ∆t[p−+(Ek+1
e ;Fc) + p+−(Ek+1

e ;Fc)]
.

(25)

From (16) and (24), it follows that

P (Ek) =
Ek

η
− PR + 2PRV

TXk
+W. (26)

where the vectors
V T =

[
v1νc(Fc1), · · · , vNiνc(FcNi

)
]
1×Ni

W T =
[
w1νI(EI1), · · · , wNjνI(EINj

)
]
1×Nj

(27)

incorporate the quadrature weights and densities evaluated at the quadrature points. The Ni ×Nj

matrix Xk
+ quantifies the dipole orientations at the quadrature points and is defined as[

Xk+1
+

]
ij

= x+(tk+1, E
k+1 + EIj ;Fci)

=
x+(tk, Ek + EIj ;Fci)

1 + ∆t[p−+(Ek+1 + EIj ;Fcj ) + p+−(Ek+1 + EIj ;Fcj )]

+
p−+(Ek+1 + EIj ;Fcj )∆t

1 + ∆t[p−+(Ek+1 + EIj ;Fcj ) + p+−(Ek+1 + EIj ;Fcj )]
.

(28)

11



1

min

Ec

EI

E
Emax

C

E

Figure 3: Structure of the 3-D array C1 and 2-D array C1 for specified field value.

Remark 1. Because the constants c1 and c2 in (25) depend on field values but not explicitly on time,
they can be evaluated offline and stored for highly efficient subsequent model implementation.
To achieve this, one can construct 3-dimensional arrays C1 and C2 whose coordinates are Fc, EI

and E with values at the quadrature points (Fci , EIj ) and field values E` uniformly distributed
between minimum and maximum field values Emin, Emax of operation; see Figure 3. During
model execution — e.g., during parameter estimation or model-based control implementation
— one would access the 2-dimensional, Ni ×Nj , arrays C`

1 = C1(:, :, E`) and C`
2 = C2(:, :, E`),

for E` nearest the specified field value Ek+1, and update X+ using the componentwise matrix
multiplication and summation

Xk+1
+ = C`

1.×Xk + C`
2.

When combined with (26), the efficiency of implementing the thermal relaxation model is the
same as that of Algorithm 2.6.4 on page 117 of [18] for the negligible relaxation model.

An alternative is to form arrays P−+,P+− storing the likelihoods at the Ni × Nj quadra-
ture points and predefined field values. The matrices C`

1, C
`
2 can then be constructed using

the operations defined in (28). This is slightly less efficient but can preferable if memory is
limited and P−+,P+− are used for the Jacobian construction described in Section 4. It is also
advantageous if variable stepsizes ∆t are required for control implementation.

3.2.2 Polarization-Strain Model

From (8)-(10), it follows that the discretized polarization and strain relations can be expressed as

P (E, σ) = χσE +
∑

α=±,90

(σdα + Pα
R)V TXα(t;E, σ)W

ε(E, σ) = sEσ +
∑

α=±,90

(Edα + εαR)V TXα(t;E, σ)W
(29)

where V and W are defined in (27). The Ni ×Nj matrices Xα(E, σ) are defined componentwise by

[Xα(t;E, σ)]ij = xα(t;E + EIj , σ, Fci) , α = ±, 90 (30)

where x±,90 are solutions of (11).
For discrete time, field and stress values tk = k∆t, Ek = E(tk) and σk = σ(tk), we let xk

α =
xα(tk;Ek + EI , σ

k, Fc) and [Xk
α]ij = xα(tk;Ek + EIj , σ

k, Fci) denote the associated dipole fractions

12



and matrix of dipole fractions evaluated at quadrature points. An implicit Euler discretization then
yields

ak+1
11 xk+1

− + ak+1
12 xk+1

+ = xk
− + ak+1

13

ak+1
21 xk+1

− + ak+1
22 xk+1

+ = xk
+ + ak+1

23

(31)

where
ak+1

11 = 1 + ∆t (p−90 + p−+ + p90−) , ak+1
21 = −∆t(p−+ + p90+)

ak+1
12 = −∆t(p+− + p90−) , ak+1

22 = 1 + ∆t (p+90 + p+− + p90+)

ak+1
13 = ∆tp90− , ak+1

23 = ∆tp90+.

We note that like the dipole fractions, these constants depend on (E,EI , Fc); e.g., ak+1
13 (E,EI , Fc) =

∆tp90−(Ek+1 + EI ;Fc).
Using Cramer’s rule, one can solve (31) to obtain

xk+1
− = ck+1

1 xk
− + ck+1

2 xk
+ + ck+1

3

xk+1
+ = dk+1

1 xk
− + dk+1

2 xk
+ + dk+1

3

where

ck+1
1 =

ak+1
22

det
, ck+1

2 =
−ak+1

12

det
, ck+1

3 =
1

det

[
ak+1

22 ak+1
13 − ak+1

12 ak+1
23

]
dk+1

1 =
−ak+1

21

det
, dk+1

2 =
ak+1

11

det
, dk+1

3 =
1

det

[
ak+1

11 ak+1
23 − ak+1

13 ak+1
21

]
det = ak+1

11 ak+1
22 − ak+1

12 ak+1
21 .

To facilitate efficient implementation, we follow the strategy detailed in Remark 1 and construct
3-D arrays C1 - D3 comprised of the constants c1 - d3 evaluated at the quadrature points (Fci , EIj )
and field values E` uniformly distributed between the minimum and maximum field values Emin

and Emax; e.g., [C2]ij = ∆t[p+−(E` +EIj ;Fci)+ p90−(E` +EIj ;Fci)]/det(E`, EIj , Fci). During model
implementation, one then accesses theNi×Nj matrices C`

1, C
`
2, C

`
3, D

`
1, D

`
2, D

`
3, nearest to the specified

field value Ek. The matrices of dipole fractions are then updated using the relation

Xk+1
+ = C`

1.×Xk
+ + C`

2.×Xk
− + C`

3

Xk+1
− = D`

1.×Xk
+ +D`

2.×Xk
− +D`

3

Xk+1
90 = I −Xk+1

+ −Xk+1
−

which again involves only componentwise matrix multiplication and summation.

4 Parameter Estimation Problem

The data for the parameter estimation problem is taken to be either polarization measurements Pi

or polarization-strain pairs {Pi, εi} corresponding to Nd field values E(ti). The model response with
parameters p for the same field values and a constant prestress σ0 is denoted by P (E(ti), σ0; p) and
ε(E(ti), σ0; p).

To calibrate the 180o polarization model, summarized in Table 2, with the parameter p given by
(15), we minimize the functional

J(p) =
1
2

Nd∑
i=1

e2(ti; p) (32)

13



where
e(ti; p) = P (E(ti), σ0; p)− Pi. (33)

We first note that the magnitudes of the first four parameters {η, PR, γ, τ} can vary from 10−4 to 108

so the performance of optimization algorithms is significantly improved by scaling the parameters
by dividing by their magnitudes. To accomplish this, we form a vector s, whose components are the
scale of each parameter, and minimize instead

J(q) =
1
2

Nd∑
i=1

e2(ti; q.× s) (34)

where q = p./s and ./ and .× respectively denote componentwise division and multiplication. Because
the components of q are on the order of unity, (34) is more readily mimimized using standard
optimization software.

To estimate parameters for the combined polarization and strain model (8), we employ the
functional

J(q) =
1
2

Nd∑
i=1

wP e
2
P (ti; q.× s) +

1
2

Nd∑
i=1

wεe
2
ε(ti; q.× s)

=
1
2

2Nd∑
i=1

Ri(q)

(35)

where
eP (ti; q.× s) = P (E(ti), σ0; q.× s)− Pi

eε(ti; q.× s) = ε(E(ti), σ0; q.× s)− εi

Ri(q) =

{
wP e

2
P (ti; q.× s) , i = 1, · · · , Nd

wεe
2
ε(ti; q.× s) , i = Nd + 1, · · · , 2Nd.

Here p = q.× s is given by (7). Since polarization is typically on the order of 10−1 and strain on the
order of 10−3, the weights wP and wε are chosen to balance the polarization and strain components
of (37).

The behavior of the functionals J(q) is typical of those arising in parameter estimation problems;
they have shallow slopes near the global minimum (if it exists) and they are typically nonconvex
with multiple local minima.

One possibility is to employ stochastic optimization techniques such as genetic algorithms, sim-
ulated annealing, and differential evolution [22]. These techniques reduce the reliance on accurate
initial parameter estimates and, in theory, provide global convergence. However, their convergence
rates are slower — they may require infinite time for convergence — and, because they are nonde-
terministic, multiple optimizations can yield varying final parameter values.

Alternatively, one can employ gradient-based techniques such as the interior-reflective Newton,
Levenberg-Marquardt, or sequential quadratic programming methods employed in the MATLAB
routines lsqnonlin and fmincon. The efficiency and success of gradient-based optimization methods
is predicated on determining good initial parameter estimates and being able to accurately determine
gradients. We show next that analytic gradient expressions can be constructed for the homogenized
energy model and, in Section 4.2, we use physical aspects of the model to develop data-driven
techniques to provide initial parameter estimates based on measured properties of polarization and
strain data. In combination, this permits routines, such as lsqnonlin which is used to optimize (32)
and (33), to be implemented in a matter of minutes.
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4.1 Analytic Jacobian or Gradient Relations

Most commercial optimization packages provide the option for constructing the Jacobian using fi-
nite difference approximation or providing an analytic expression. The former option is certainly
feasible for optimizing (34) or (35) but it will be significantly slower and slightly less accurate than
optimization using the analytic Jacobian. We illustrate first the computation of the Jacobian for
the polarization model (16) with the functional (34) since it is simpler than that for the combined
polarization-strain model.

Polarization Model

The Jacobian corresponding to (34) is

J =


∂e(t1;p)

∂η
∂e(t1;p)

∂PR
· · · ∂e(t1;p)

∂βk
...

...
...

∂e(tNd
;p)

∂η

∂e(tNd
;p)

∂PR
· · · ∂e(tNd

;p)

∂βk

 (36)

where e(ti; p) is defined in (33). We note that

[J ]ij =
∂e(ti; p)
∂qj

=
∂

∂qj
P (E(ti), σ0; p) =

∂

∂pj
P (E(ti), σ0; p)

dpj

dqj
=

∂

∂pj
P (E(ti), σ0; p)sj (37)

so the Jacobian is simply the gradient or sensitivity of P with respect to the parameters. For the
discretized model, these derivatives have the form

∂P

∂η
= −E

η2
,

∂P

∂PR
= −1 + 2V T [X+]W + 2PRV

T [∂PR
X+]W

∂P

∂γ
= 2PRV

T [∂γX+]W ,
∂P

∂τ
= 2PRV

T [∂τX+]W

∂P

∂αk
=

2PR∑
` α`

(Vk − V )T [X+]W ,
∂P

∂βk
=

2PR∑
` β`

V T [X+](Wk −W )

where [V T ]i = viνc(Fci), [W ]j = wjνI(EIj ), as indicated in (27), and [VT
k ]i = viφk(Fci), [Wk]j =

wjϕk(EIj ). The components of the Ni × Nj matrices [∂ξX+]ij = ∂x+

∂ξ (t;E(t) + EIj , σ0;Fci) for
ξ = PR, γ, τ , can be found by differentiating the evolution equation (19) and switching the order of
differentiation to obtain the differential equations

ẋPR = − (∂PR
p+− + ∂PR

p−+)x+ − (p+− + p−+)xPR + ∂PR
p−+

ẋγ = − (∂γp+− + ∂γp−+)x+ − (p+− + p−+)xγ + ∂γp−+

ẋτ = − (∂τp+− + ∂τp−+)x+ − (p+− + p−+)xτ + ∂τp−+

in the variables xPR ≡ ∂x+

∂PR
, xγ ≡ ∂x+

∂γ and xτ ≡ ∂x+

∂τ with

∂PR
p+− =

{
−γ (E+Ec)2

2Ec
p+− , E ≤ Ec

0 , E > Ec

, ∂PR
p−+ =

{
−γ (E−Ec)2

2Ec
p−+ , E ≤ Ec

0 , E > Ec

∂γp+− = −∆Ga
+−p+− , ∂γp−+ = −∆Ga

−+p−+

∂τp+− = −1
τ
p+− , ∂τp−+ = −1

τ
p−+.

(38)

Given values of x+ and x−, the differential equations (36) can be solved using an implicit Euler
method analogous to that described in Section 3.2.1 to approximate the solution of (19).
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Remark 2. The Jacobian construction can be facilitated by the use of lookup tables, in a manner
analogous to that described in Section 3.2.1, to avoid the repeated evaluation of the likelihoods
p+− and p−+ for all of the quadrature points (Fci , EIj ). Alternatively, if memory is limited,
one can construct two arrays P−+,P+− storing the likelihoods at field values and quadrature
points in a manner similar to that discussed in Remark 1 of Section 3. If memory is plentiful, it
will be more efficient to construct lookup tables associated with the quantities defined in (38).

Polarization-Strain Model

The construction of the Jacobian for the functional (33) is analogous but slightly more compli-
cated since it involves more parameters p = [P+

R , ε
+
R, ε

90
R , χ

σ, d+, s
E , γ, τ90, τ180, αk, βk]. We first note

that the model (29) exhibits the parameter dependencies

P (E, σ) = χσE +
∑

α=±,90

(σdα + Pα
R)V T (αk)Xα(t;E, σ, p̂)W (βk)

ε(E, σ) = sEσ +
∑

α=±,90

(Edα + εαR)V T (αk)Xα(t;E, σ, p̂)W (βk)

where V and W are defined in (27), Xα is defined in (30), and

p̂ = [P+
R , ε

+
R, ε

90
R , d+, γ, τ90, τ180].

With the assumptions(4) and definitions [VT
k ]i = viφk(Fci), [Wk]j = wjϕk(EIj ), it follows that

∂P

∂P+
R

= V T [X+]W − V T [X−]W +
∑

α=±,90

(σdα + Pα
R)V T [∂P+

R
Xα]W

∂P

∂d+
= σV T [X+]W − σV T [X−]W +

∑
α=±,90

(σdα + Pα
R)V T [∂d+Xα]W

∂P

∂ζ
=

∑
α=±,90

(σdα + Pα
R)V T [∂ζXα]W

∂P

∂αk
=

∑
α=±,90

(σdα + Pα
R)∑

` α`
(V − V )T [Xα]W ,

∂P

∂βk
=

∑
α=±,90

(σdα + Pα
R)∑

` β`
V T [Xα](W −W )

∂P

∂χσ
= E ,

∂P

∂sE
= 0

for ζ = ε+R, ε
90
R , γ, τ90 and τ180. Differentiation of the strain relations yields similar terms.

We next discuss the construction of the Ni × Nj matrices [∂ξXα]ij = ∂xα
∂ξ (t;E(t) + EIj , σ0;Fci)

where ξ = P+
R , d+, ε

+
R, ε

90
R , γ, τ90 and τ180. Differentiation of (11) with respect to ξ and switching the

order of differentiation yields the fourteen differential equations

ẋξ
− = − ∂

∂ξ
(p−90 + p−+ + p90−)x− − (p−90 + p−+ + p90−)xξ

−

+
∂

∂ξ
(p+− − p90−)x+ + (p+− − p90−)xξ

+ +
∂p90−
∂ξ

ẋξ
+ =

∂

∂ξ
(p−+ − p90+)x− + (p−+ − p90+)xξ

−

− ∂

∂ξ
(p+90 + p+− + p90+)x− − (p+90 + p+− + p90+)xξ

− +
∂p90+

∂ξ

(39)
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in the variables xξ
+ ≡ ∂x+

∂ξ , x
ξ
− ≡

∂x−
∂ξ . For an input field value E(tk), x+ and x− can be determined

using the techniques detailed in Section 3.2.2, and the solution to (39) can be approximated using an
implicit Euler discretization and Cramer’s rule in a manner analogous to that detailed in Section 3.2.2.

To evaluate the derivatives of the likelihoods

pαβ =
1
ταβ

e−γ∆Ga
αβ =

{
1

ταβ
e−γ∆G0(1−Fαβ/Fc)2 , Fαβ ≤ Fc

0 , Fαβ > Fc

we note that
∂pαβ

∂γ
= −∆Ga

αβpαβ ,
∂pαβ

∂ταβ
=
−1
ταβ

pαβ

and
∂pαβ

∂ξ
=

{
2γ∆G0

Fc
(1− Fαβ/Fc)pαβ

∂Fαβ

∂ξ , Fαβ ≤ Fc

0 , Fαβ > Fc.

The values of ∂Fαβ

∂ξ resulting from the relations (13) are compiled in Table 3.

ξ 90+ +90 90− −90 +− −+

P+
R E −E −E E −2E 2E

ε+
R σ −σ σ −σ 0 0

ε90
R −σ σ −σ σ 0 0

d+ Eσ −Eσ −Eσ Eσ −2Eσ 2Eσ

Table 3: Values of the derivatives ∂Fαβ

∂ξ .

4.2 Data-Driven Techniques for Initial Parameter Estimates

An ideal data set for obtaining data-driven initial parameter estimates and optimization-based final
parameter values has two components: (i) saturated major loop and biased minor loop polarization
and strain data, and (ii) creep polarization or strain data at two or more field values as depicted in
Figure 4(a) and (b). If creep data is not available, frequency-dependent data, such as that depicted
in Figure 4(c) can be used to provide an initial estimate for τ90.

(c)

Ec

!"

E

(b)

#

E

#

E

P

(a)

PR
+

#R
90

#R
+

$, %90
%180

d+

Figure 4: (a) and (b) Saturated major loop, minor loop, and creep data used to determine initial esti-
mates for P+

R , ε
+
R, ε

90
R , χ

σ, d+, γ, τ90 and τ180. (c) Frequency-dependent strain data used to determine
initial estimate for τ90 or τ180.
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Figure 5: Polarization and field values used to obtain initial estimates for F̄c, σc, σI .

As noted in (7), the parameters to be estimated are p = [P+
R , ε

+
R, ε

90
R , χ

σ, d+, s
E , γ, τ90, τ180, αk, βk].

The representations (5) for the densities νc(Fc) and νI(EI) additionally requires estimation of the
coefficients p̄ = [F̄c, σc, σI ].

Data-driven techniques to estimate initial values for P+
R , ε

+
R, ε

90
R , χ

σ, d+, Ēc, F̄c, σc, σI are summa-
rized in Table 4 with reference to Figures 4 and 5. The values of σI and σc are then used to construct
the vectors ~σI = {2kσc} and ~σc = {2kσc} for the density basis functions φk(EI) and ϕk(Fc). One
strategy to obtain initial values for the coefficients αk and βk is simply to take αk = βk = 1.
Documented values provide an initial estimate for sE .

Initial Estimates for γ, τ90 and τ180 Based on Creep Data

Creep data collected at two or more fixed fields, as indicated by the thick lines in Figure 6, can be
used to determine initial estimates for γ, τ90 and τ180. Whereas either strain or polarization data can
be employed, the former exhibits more sensitivity to 90o switching so we employ it here. The fixed
field values are denoted by Ē1 and Ē2 as indicated by (1) and (2) for the strains plotted in Figure 6.
We note that Ē1 designated by (1) satisfies Ē1 < −Ec. Finally, let t0 designate the time at which
the field was fixed, let ε1, ε2 and ε3 designate measured strain values at equally spaced subsequent
times t1 = t0 + ∆t, t2 = t0 + 2∆t and t3 = t0 + 3∆t, and let e2 = ε2 − ε1, e3 = ε3 − ε2.

Assumption 1. We assume that the decay behavior of dipole fractions can be adequately approx-
imated by neglecting interaction fields and assuming that switches occur at ±Ec. For a fixed
field E > Ec, we assume that x− = 0 and that p90− = p+90 = p+− = 0. Similarly, for E < −Ec,
we assume that x+ = 0 and that p−90 = p90+ = p−+ = 0.

With these simplifying assumptions, it follows from (2) that

ẋ− = −p90−x− + p90− , E < −Ec

ẋ+ = −p90+x+ + p90+ , E > Ec

(40)

For fixed fields, (40) has the analytic solution

x−(t, E) = 1− (x−(t0, E)− 1)e−(t−t0)p90−(E) , E < −Ec

x+(t, E) = 1− (x+(t0, E)− 1)e−(t−t0)p90+(E) , E > Ec.
(41)
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Parameter Data or Source Justification
P+

R Remanence polarization

ε+R Remanence strain

ε90
R Minimum strain

χσ Slope of E-P curve prior to switch-
ing.

From the relation P = χσE = ε0(εr − 1)E,
it follows that the relative permittivity εr
and χσ satisfy χσ = ε0(εr − 1) where ε0 =
8.85× 10−12 F/m is the permittivity of free
space.

d+ Slope of E-ε curve prior to switching. Can be compared to documented material
values.

sE Slope of σ-ε curve. Can be compared to documented material
values.

γ, τ90, τ180 Creep data as shown in Figure 4. γ and τ90 given by solution of (43) using data
from two fixed fields Ē1 and Ē2. We typi-
cally take τ180 = 1

10τ90.

αk = βk = 1 A priori choice

Ēc

F̄c =
2P+

R Ēc

Coercive field Ec Whereas the mode Êc most closely coincides
with Ec (see Appendix B), by approximating
with the median Ẽc, the relation Ẽc = eµc

from (50) can be used to obtain µc = Ēc.

σI a Switching begins when νI(EI) intersects
νc(−Ec) with 2σI specifying the 94.5% con-
fidence level.

σc Ef : Polarization where switching
completes for increasing E.

Occurs when νI(EI) quits intersecting
νc(Ec) at 94.5% confidence level. From (51),
this yields σc = 1

2 ln((Ef − 2σI)/Ẽc) since
eµc+2σc + 2σI = Ef .

Table 4: Data-driven algorithms for initial parameter estimates with reference to Figures 4–6.

From Assumption 1, it follows that

ε(E, σ) ≈ sEσ + E
∑

α=±,90

dαxα +
∑

α=±,90

εαRxα

which, when combined with the physical assumptions in (4), yields

e3
e2

=
[(Ed+ + ε+R − ε90

R )x+(t3, E) + ε90R ]− [(Ed+ + ε+R − ε90R )x+(t2, E) + ε90R ]
[(Ed+ + ε+R − ε90

R )x+(t2, E) + ε90R ]− [(Ed+ + ε+R − ε90R )x+(t1, E) + ε90R ]

=
x+(t3, E)− x+(t2, E)
x+(t2, E)− x+(t1, E)

(42)

19



0 100 200 300 400
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

Time (s)

E 
(M

V/
m

)

(2) (1)

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

Time (s)

St
ra

in
 (%

)

(2) (1)

(a) (b)

!2 !1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

E (MV/m)

St
ra

in
 (%

)

(2)

(1)

300 310 320
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Time (s)

St
ra

in
 (%

)

210 220 230
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

St
ra

in
 (%

)

t3,!3

t0,!0

t1,!1

t2,!2

t3,!3

t0,!0

t1,!1

t2,!2

(2)(1)

(c) (d)

Figure 6: Zero prestress strain data from [24] used to obtain initial estimates of γ and τ90.

for E > Ec. The expression for E < −Ec is identical. From (3), (41) and (42), it follows that

1
τ90

e−γ∆Ga
90−(E) =

1
∆t

ln
(
e2
e3

)
, E < −Ec

1
τ90

e−γ∆Ga
90+(E) =

1
∆t

ln
(
e2
e3

)
, E > Ec.

(43)

We note that if |E| > Ec, as is the case for the data at Ē1 indicated in Figure 6 by (1), energy
barriers are eliminated so that ∆Ga

−90(E) = ∆Ga
+90(E) = 0 which yields

τ90 =
∆t

ln(e2/e3)
.

In this case, the decay data at the second fixed field can be used to solve for γ. If |E| < Ec for both
fixed fields, or if Ec is unknown, one can eliminate τ90 to first solve for γ. To illustrate for Ē1, Ē2 < 0
and corresponding strain differences e12, e13 and e22, e23, elimination of τ90 yields the relation

eγ∆Ga
−90(Ē1) ln(e12/e13) = eγ∆Ga

−90(Ē2) ln(e22/e23) (44)

for γ. Note that (44) can be easily solved for γ by plotting the solution as a function of γ2 and
approximating the root or by using a symbolic routine; e.g., the symbolic MATLAB command
solve.m. The parameter τ90 is then determined from (43). An initial value of τ180 is then taken to
be τ180 = 1

10τ90.
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The data-driven algorithm to determine initial parameter estimates for the 1800 switching polar-
ization model (16) is analogous.

Initial Estimates for τ90 Based on Frequency-Dependent Data

Frequency-dependent strain or polarization data, such as that plotted in Figures 4 and 7, can be
used in a similar manner to obtain an initial estimate for τ90 or τ180. We let t0 denote the time at
which a field reversal occurs at Emax or Emin. As before, we let ε1, ε2 and ε3 designate measured
strains at equally spaced subsequent times t1 = t0 + ∆t, t2 = t0 + 2∆t and t3 = t0 + 3∆t, and let
e2 = ε2 − ε1, e3 = ε3 − ε2.

Assumption 2. For a field reversal at Emax, we make the simplifying assumption that x− ≈ 0
and that dipole kinetics are dominated by switching from 90o to 180o orientations; i.e., p90− =
p+90 = p+− = 0. Similarly, for reversal at Emin, we assume that x+ ≈ 0 and p−90 = p90+ =
p−+ = 0. These are the same assumptions made in Assumption 1. Finally, we assume that
activation energies are sufficiently small to permit the approximation

p90+ = p90− =
1
τ90

. (45)

With these assumptions, (11) reduces to

ẋ− =
−1
τ90

x− +
1
τ90

, E ≈ Emin

ẋ+ =
−1
τ90

x+ +
1
τ90

, E ≈ Emax

(46)

which has the solution

x−(t, E) = 1− (x−(t0, E)− 1)e−(t−t0)/τ90 , E ≈ Emin

x+(t, E) = 1− (x+(t0, E)− 1)e−(t−t0)/τ90 , E ≈ Emax.
(47)

If we assume that E1d+ ≈ E2d+ ≈ E3d+ ≈ Emax, analysis similar to that used to obtain (42) yields
the relation

τ90 =
∆t

ln(e2/e3)
(48)

which provides an initial, data-driven estimate for τ90. Due to the assumption (45), which is more
stringent than the case for creep data where fields are fixed, this data does not readily admit a
data-driven algorithm to initially estimate γ. Hence it must simply be estimated through a least
squares fit to data.

max

0,!0)

(t3,!3) (t2,!2)
(t1,!1)

!

E

(t

Figure 7: Frequency-dependent strain data used to obtain an initial estimate for τ90.
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5 Model Calibration and Validation for PZT and BaTiO3

We illustrate the performance of the data-driven parameter estimation algorithms using PZT data
reported in [24] and BaTiO3 data from [5].

For the PZT data, polarization and strain measurements, in the absence of applied mechan-
ical stresses, were collected using a P-802.00 piezo-actuator whereas a prestressed NEC Model
AEO505D08 actuator with a restoring spring was used to collect stress-dependent data. Both are
multilayer devices with similar dimensions so we briefly summarize the latter and refer the reader
to [24] for details regarding both devices.

The AEO505D08 actuator was comprised of 80 active layers, each of thickness 0.1 mm. The
dimensions, including packaging, were 6.5 × 6.5 × 10 mm which yielded the cross-sectional area
A = 42.25 mm2 = 4.225 × 10−5 m2. The polarization was measured using a Sawyer-Tower circuit
comprised of a reference capacitor connected in series with the PZT actuator. Displacements were
measured using a fiber-optic displacement sensor having an effective resolution of 0.1 µm and strains
were computed by dividing the total thickness (8 mm) of the active layers.

When reporting the accuracy of model fits, we define the relative errors to be

erel =
∑Nd

i=1

(
wP [P (E(ti), σ; q)− Pi]2 + wε[ε(E(ti), σ; q)− εi]2

)∑Nd
i=1

(
wPP 2

i + wεε2i
) .

The functionals (34) and (35), with the analytic Jacobians constructed using the algorithms in
Section 4.1, were minimized using the MATLAB nonlinear least squares routine lsqnonlin with the
options ‘Algorithm’=‘trust-region-reflective’, ‘TolFun’=1e− 4, ‘Jacobian’=‘on’ and a lower bound of
0 specified for all parameters except ε90

R which was bounded below by −1× 10−2.

5.1 Zero Prestress PZT Data

90o Polarization-Strain Model

We first illustrate the calibration and performance of the 90o switching polarization-strain model
(8) and 180o switching polarization model (16) using zero prestress data reported in [24] obtained
using a P-802.00 PZT actuator.

The data used to obtain initial parameter values is plotted in Figures 6 and 8 and resulting values,
obtained using the algorithms in Table 4 are compiled in Table 5. Corresponding model predictions
and initial density representations are respectively plotted in Figure 9 and Figure 11(a) and (c). The
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Figure 9: Polarization and strain model prediction to zero-prestress data from [24] using initial
parameter values obtained using the data-driven algorithms in Table 4: (a) time domain and (b)-(d)
phase space; ( ) experimental data, ( • •) model fit, ( ) model fits for 8 selected loading
cycles. Labels (1) and (2) in Figure 6 indicate strain data used to find initial estimates for γ and τ90.

initial values of P+
R , ε

+
R, ε

90
R and χσ are obtained directly from the polarization and stain data shown

in Figure 8. The density coefficient F̄c = P+
R Ēc results from Ēc = 0.5 × 106, and 2σI = 0.5 × 106

yields σI = 0.25× 106. Similarly, the relations in Figure 5 yield σc = 0.5 log((1.5− 0.5)/0.5) ≈ 0.35.
Finally, the initial estimates for γ and τ90 were computed using the data shown in Figure 6. The
initial value d+ = 374× 10−12 is a literature value of d33 reported for PZT.

Whereas the model quantifies the trends exhibited by the data, the initial predictions are not
sufficiently accurate for material or device characterization. We then minimized the functional (35)
using 2140 data values to obtain the optimized parameters reported in Table 5 and the resulting
fits and densities shown in Figure 10 and 11(b) and (d). The optimized relative error is 10.99% It
is observed that the calibrated polarization and strain models accurately fit the data in all drive
regimes including the saturation and burst regions, the creep regions, and minor loops. Moreover,
use of the analytic Jacobian and efficient implementation algorithms permitted the optimization to

P+
R ε+

R ε90
R χσ

+ d+ γ τ90 τ180

Init. 0.2 0.081×10−2 0.0 4.71×10−8 374×10−12 1.38× 10−4 0.64 .064

Opt. 0.18 0.050×10−2 -5.64×10−2 5.35×10−8 930.46× 10−12 2.08×10−3 0.41 .043

Table 5: Initial and optimized parameter values for the polarization and strain model with zero
prestress. The fixed density parameters were F̄c = 0.2 × 106, σI = 0.25 × 106 and σc = 0.35.
The optimized density parameters α1 = 1.65, α0 = 0.92, α−1 = 0.77, α−2 = 2.55, α−3 = 6.69 and
β1 = 0.79, β0 = 1.24, β−1 = 1.12, β−2 = 2.95, β−3 = 9.45 were obtained using initial estimates of 1.
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Figure 10: Optimized fit of the polarization and strain model to zero-prestress data from [24]: (a)
time domain and (b)-(d) phase space; ( ) experimental data, ( • •) model fit, ( ) model
fits for 8 selected loading cycles.

be completed in 673 s on a Mac Pro with a 2.26 GHz processor and 8 GB of memory.
We note that the final parameter values in Table 5 are quite close to the initial values predicted

by the data-driven algorithms. Hence much of the inaccuracy in the initial model prediction is due
to the initial density parameter choices αk = βk = 1. The initial values of αk and βk can be easily
tuned to provide more accurate fits; however, the choice of 1 simplifies the data-driven algorithms
and is sufficiently accurate so that the optimization routine yields accurate fits in a timely manner.
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Figure 11: (a) Initial and (b) optimized critical driving force density νc(Fc) with 41 equally spaced
quadrature points marked as dots. (c) Initial and (d) optimized interaction field density νI(EI).

180o Polarization Model

For applications and operating regimes with negligible to moderate prestresses σ0, the field-
polarization response exhibits minimal dependency on 90o switching. In these cases, the polarization
can be adequately modeled using the 180o switching model summarized in Table 2.
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PR ησ γ τ90

Init. 0.2 0.25×108 2.79×10−3 0.15

Opt. 0.20 0.22×108 3.78×10−3 0.10

Table 6: Initial and optimized parameter values for the 180o model zero prestress.

To illustrate, we employed the data-driven algorithms of Section 4.2 to obtain the parameter
estimates compiled in Table 6. We then minimized the functional (34) using 2140 data points to
obtain the optimized fit and densities shown in Figure 12. The accuracy of the fit demonstrates the
applicability of the 180o switching model for characterizing the polarization in low to moderate stress
regimes. Moreover, the use of the implementation algorithms of Section 3 and analytic Jacobian
relations of Section 4.1 renders the model calibration codes highly efficient and optimization was
achieved in approximately 36 s on the Mac Pro.
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Figure 12: Optimized fit of the 180o polarization model to zero-prestress data from [24]: (a) time
domain and (b) phase space; ( ) experimental data, ( • •) model fit, ( ) model fits for 8
selected loading cycles.

5.2 Prestressed Actuator

The estimation of parameters and performance of the polarization-strain model for a prestressed
actuator is illustrated in [19] using data reported in [24].

5.3 Variable Loading Rates

To illustrate the physical phenomena, and resulting model response, associated with variable loading
rates, we consider data from [24] that was collected at loading rates of 5 V/s, 50 V/s and 500 V/s.
Since this data was collected using the P-802.00 actuator, that had purely electrical loading, the
polarization and strains were modeled using the relations (8) that neglect the prestress σ0 and spring
and damping coefficients k and c associated with restoring mechanisms.

The strain and polarization data plotted in Figure 13 exhibit differing dynamics at the three
loading rates, especially in the burst region where +180o to 90o and 90o to −180o dipole transitions
are dominant. In the field-polarization plots, this is reflected by delayed first-order minor loops as
indicated by the curves (1)-(3). The slower 90o to −180o transitions, and resulting lagging effects
at high loading rates, are even more noticeable in the field-strain plots due to the degree to which
stains depend on 90o dipole switching.

To model this rate-dependent phenomena, the data-driven techniques were used to compute the
initial parameter estimates compiled in Table 7 along with the density coefficients F̄c = 0.2×106, σc =
0.347 and σI = 0.25 × 106. We then minimized the functional (43), using the 5 V/s and 500 V/s
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Figure 13: Polarization and strain data from [24], collected at (a),(d) 5 V/s, (b),(e) 50 V/s, and
(c),(f) 500 V/s.

data, with wP = 1, wε = 40, 000, to obtain the optimized parameters in Table 7, the densities shown
in Figure 14, and the model fits plotted in Figure 12. We note that the model is predicting the
50 V/s behavior.

The time-polarization and time-strain plots illustrate that the model is quantifying both the
major and minor loop behavior at the three loading rates. The phase plots illustrate that while the
model is very accurately characterizing the field-polarization behavior, there is some inaccuracy in
the field-strain fits and prediction. This may be due to limitations in the relations used to quantify
90o and 180o switching mechanisms. However, the model is quantifying the lagged switching behavior
at 500 V/s that is present in both the polarization and strain data. We note that improved fits for
each loading rate can be achieved if parameters are optimized for that rate. The dynamic nature
of the model is illustrated by the fact that it adequately characterizes the rate-dependent material
behavior using one set of parameters. This makes it advantageous for material characterization,
device optimization, and control design of applications requiring variable loading rates.
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Figure 14: (a) Critical driving force density νc(Fc) and (b) interaction field density νI(EI) with 41
equally spaced quadrature points marked as dots.
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Figure 15: Optimized fit of the polarization-strain model to data from [24] for loading rates of (a)
5 V/s and (c) 500 V/s. (b) Model prediction for a loading rate of 50 V/s: ( ) experimental data,
( ) model fit.
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P+
R ε+

R ε90
R χσ

+ d+ γ τ90 τ180

Init 0.18 0.050× 10−2 -5.64× 10−2 5.35× 10−8 930.46× 10−12 2.08× 10−3 0.41 0.043

Opt 0.21 0.066× 10−2 −0.071× 10−2 3.93× 10−8 992.26× 10−12 8.37× 10−3 1.48× 10−9 0.16

Table 7: Initial and optimized parameter values for the polarization and strain model obtained
using loading rates of 5 V/s and 500 V/s. The optimized density parameters are α1 = 5.02, α0 =
1.82 × 10−2, α−1 = 1.24, α−2 = 2.56, α−3 = 2.89 and β1 = 4.63 × 10−2, β0 = 1.13 × 10−8, β−1 =
4.71× 10−8, β−2 = 3.42× 10−14, β−3 = 11.01.

5.4 Single Crystal BaTiO3

Here we illustrate the performance of the model for characterizing the behavior of single crystal
BaTiO3 using data from [5]. For the data considered here, the applied stress was parallel to the
applied field thus motivating consideration of a uniaxial model. Furthermore, we employ the grain-
level or single crystal relations (10).

We first determined the initial and optimized parameter values reported in Table 8 through a fit
to the data collected at prestresses of -0.36 MPa and -1.78 MPa. The correlation of the parameter
values for P+

R , ε
+
R, ε

90
R , χ

σ
+ and d+ to corresponding properties of the data can be directly observed.

We also note that τ90 > τ180 which indicates that 180o switching occurs more quickly than 90o

switching. This is consistent with analogous observations for PZT, reported in [23], and explains the
flat behavior of the P -ε data.

The resulting fit at -0.36 MPa and -1.78 MPa and predictions at prestresses of -0.72 MPa and
0 MPa are shown in Figure 16. It is observed that the polarization and strain fits at -0.36 MPa
and -1.78 MPa are quite accurate as are the polarization predictions at the other two prestresses.
Whereas the strain prediction at -0.72 MPa is moderately accurate, the model overpredicts the
strains for the unstressed crystal where 90o switching is minimal. This is in accordance with the
results reported in [12] and indicates some limitations in the 90o switching characterization in the
absence of prestresses.

P+
R ε+

R ε90
R χσ

+ d+ sE γ τ90 τ180

Init 0.26 0.67× 10−2 −0.12× 10−2 1.5× 10−8 85.6× 10−12 15.7× 10−12 0.015 0.06 0.01

Opt 0.25 0.73×10−2 −0.99× 10−2 2.82 ×10−8 841.89× 10−12 26.83× 10−11 0.00041 0.34 0.00041

Table 8: Initial and optimized BaTiO3 parameter values obtained through a fit to -0.36 MPa and
-1.78 MPa prestressed data from [5]. The density representation (14) employed the optimized value
F̄c = 0.0145× 106.

6 Concluding Remarks

The homogenized energy model is a multiscale, micromechanical framework that quantifies hysteresis
and constitutive nonlinearities intrinsic to ferroelectric materials. It incorporates mechanisms at mul-
tiple spatial scales by combining energy analysis at the domain level with stochastic homogenization
techniques to construct material-level constitutive relations. The multiple timescales associated with
dipole switching processes are incorporated by employing Boltzmann principles to quantify transi-
tion rates associated with dipole fractions. In combination, the framework characterizes a range
of rate-dependent hysteretic phenomena associated with the materials. Furthermore, constitutive
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Figure 16: Fit of the polarization and strain model to single crystal BaTiO3 data from [5] with a
prestress of (d)-(f) -0.36 MPa and (j)-(`) -1.78 MPa. Model predictions for prestresses of (a)-(c)
0 MPa and (g)-(i) -1.07 Mpa: ( ) experimental data, ( ) model fit.

relations resulting from the framework can be directly employed to construct distributed models, for
complex devices, that are amenable to finite element implementation.

In this paper, we presented algorithms that facilitate efficient model calibration and implemen-
tation. The efficiency of the parameter estimation algorithms is based in part on the physical nature
of the model which permits model parameters to be correlated with properties of field-polarization
and field-strain data as shown in Figure 4. Specifically, we presented data-driven algorithms to
determine initial estimates for P+

R , ε
+
R, ε

90
R , χ

σ, d+, γ, τ90, τ180 that facilitate subsequent optimization
through least squares fits to the data. Furthermore, this data can be used to determine values for
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the density coefficients, Ēc, F̄c, σc and σI .
Major loop, biased minor loop, and creep data, of the form depicted in Figure 4, represents ideal

data to be collected if there is flexibility regarding the design of characterization experiments. How-
ever, in many cases, one is limited to biased minor loop data such as that shown in Figure 1. In such
cases, one can employ values previously reported in the literature as initial values for optimization
routines.

The coefficients d33 and sE and relative permittivity εr, which can be used to compute χσ, are
commonly reported for ferroelectric materials and documented values can be employed as initial
parameter estimates. The remanence polarization PR, remanence strain εR, and coercive field Ec are
also fundamental properties of ferroelectric materials that are often reported only in material char-
acterization investigations rather than in compilations for transducer design. The model parameters
P+

R , ε
+
R, ε

90
R , γ, τ90 and τ180 are related to intrinsic material properties that are critical to actuator

and sensor design and characterization.
This motivates the compilation of material property and parameter tables and libraries that

facilitate the calibration of models for devices that employ these materials. Representative values
of d33, s

E
11, εr, χ

σ from the literature and PR, εR, Ec from the data employed here, and in the com-
panion paper [19], are respectively compiled in Tables 9 and 10. Similarly, representative values of
P+

R , ε
+
R, ε

90
R , γ, τ90, τ180 for PZT, PLZT and BaTiO3 are summarized in Table 11. We note that while

variations in these parameters exist for differing devices and operating regimes, these representative
values can be employed to initialize optimization routines. Furthermore, it is noted in Appendix A
that we are developing a website of data libraries, simulation codes, and modeling frameworks for
ferroelectric, ferromagnetic, and ferroelastic materials. Data properties and parameters that can be
used for material and device characterization will be compiled and updated at this site.

d33 (pC/N) sE
11 (m2/N) εr (C/Vm) χσ = ε0(εr − 1) (C/Vm)

PZT-5A 374 1.88× 10−11 1800 1.59× 10−8

BaTiO3 85.6 8.05× 10−12 163 1.47× 10−9

PLZT 1188 1.47× 10−11 6356 2.99× 10−8

Table 9: Material properties for PZT-5A [17], BaTiO3 [10] and PLZT [14]. Note that the free space
permittivity has the value ε0 = 8.85× 10−12.

PR (C/m2) εR (Unitless) Ec (MV/m)

PZT-5A 0.2 0.081× 10−2 0.5

BaTiO3 0.26 0.67× 10−2 0.05

PLZT 0.25 0.25× 10−2 0.36

Table 10: Remanence polarizations, remanence strains, and coercive fields for the PZT data [24],
single crystal BaTiO3 data [5] and PLZT data [14].

A Available Codes

To facilitate model validation and dissemination to the community, we have made codes and data
available at the website http://www4.ncsu.edu/~jhcrews/smart/code/pzt/index.html.
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P+
R ε+

R ε90
R χσ

+ d+ γ τ90 τ180

PZT 0.18 0.050× 10−2 −5.64× 10−2 5.35× 10−8 930.46× 10−12 2.08× 10−3 0.41 0.043

BaTiO3 0.25 0.73× 10−2 −0.99× 10−2 2.82× 10−8 841.89× 10−12 4.1× 10−4 0.34 0.00041

PLZT 0.24 0.13× 10−2 −0.03× 10−2 10.06× 10−8 1390.5× 10−12 9.62× 10−4 0.032 0.70

Table 11: Representative parameter values for PZT, BaTiO3 and PLZT. Appropriate units are given
in the notation table in Section 1.

B Lognormal Density

We summarize here aspects regarding the lognormal density that are pertinent to constructing co-
ercive field densities. Details can be found in [1, 11].

If Y ∼ N(µ, σ) is a normal random variable with mean µ and standard deviation σ, X = exp(Y )
is lognormally distributed, X ∼ lnN(µ, σ), with density

f(x;µ, σ) =
1

xσ
√

2π
e−(ln x−µ)2/2σ2

. (49)

The mean x̄, mode x̂, median x̃ and variance σ̄2 of X are related to µ and σ by way of the relations

x̄ = E[X] = eµ+σ2/2 , x̂ = eµ−σ2

x̃ = eµ , σ̄2 = var[X] =
(
eσ

2 − 1
)
e2µ+σ2

.
(50)

As illustrated in Figure 17, the mean, mode and median differ due to the skewed nature of the
density. We note that for the normal density, µ and σ have the same units as x whereas the physical
meaning of these units is lost in the lognormal relations (50).

The dependence of f on µ and σ is illustrated in Figure 18. Note that X approaches a normal
density with x̄ = x̃ = x̂ = eµ as σ decreases and the density limits to the Dirac density at eµ as
σ → 0.

As noted on page 9 of [1], the qth quantile of the lognormal density can be expressed as[
eµ−qσ, eµ−qσ

]
(51)

0 2 4 6 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Lo
gn

or
m

al
 D

en
sit

y

x̂ x̃ x̄

Figure 17: Mode x̂, median x̃ and mean x̄ of the lognormal density with µ = 0, σ = 1.

31



as illustrated in Figure 19. This relation, along with (50), will be used in Section 4.1 to specify initial
density parameter values in terms of measured properties of polarization and magnetization data.
For example, two standard deviations, which represents a probability of 94.5% is plotted for normal
and lognormal densities in Figure 19.
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Figure 18: Dependence of the lognormal density on (a) σ2 with µ = 0, and (b) µ with σ2 = 1.
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[µ− 2σ, µ+ 2σ], and (b) lognormal density

[
eµ−2σ, eµ+2σ

]
.
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